

Category	NMEC M&V	IPMVP Option C M&V
Purpose & Regulatory Alignment	Primarily designed for utility energy efficiency programs and regulatory compliance (e.g., in California). Focuses on standardizing and automating meter-based savings claims.	A global, non-prescriptive framework for quantifying energy and water savings. Used widely in Energy Performance Contracting (EPC) and by various government/utility programs.
Modeling Requirements	Typically utilizes high-granularity interval data (e.g., hourly or sub-hourly) for modeling. Emphasizes highly specified, statistically rigorous, and often automated regression models to meet regulatory requirements.	Uses utility meter data at a facility or sub-facility level, often monthly, but can use more granular data. Requires developing a multivariate regression model to relate energy use to independent variables.
Data Normalization & Adjustments	Emphasizes comprehensive normalization using granular data to account for routine variables (e.g., weather, time of day). Non-Routine Event (NRE) adjustments are critical and follow specific, rigorous protocols.	Normalizes for key, routine independent variables that affect energy consumption (e.g., weather). Requires adjustments for Non-Routine Events (NREs), which are defined and executed as part of the project's M&V plan.
Use Cases	<ol style="list-style-type: none"> 1. SMB behavioral and operational efficiency utility programs 2. Pay-for-performance utility programs 	<ol style="list-style-type: none"> 1. Large C&I facilities 2. Deep retrofits with multi-measure projects 3. Whole building savings verification for regulators
Level of Complexity	<p>High/Moderate. Requires sophisticated data infrastructure and specialized, often standardized, software/algorithms.</p> <p>The M&V process itself may be automated, but setting up the standardized protocols and handling NREs requires high expertise.</p>	Moderate/High. Requires justification of independent variables, develops a statistically valid regression model, and defines/applies routine and non-routine adjustments. Complexity depends on data granularity and site variables.